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Thermosolutal convection between poorly conducting plates
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Abstract. Thermosolutal convection is considered in a fluid layer between poorly conducting horizontal boundaries.
The horizontal scale of the motions is much greater than the depth of the fluid layer, provided the motion is not too
vigorous, and this disparity between horizontal and vertical scales provides the basis for an asymptotic expansion of
the solution. Under the assumption of near-constant solute-flux at the horizontal boundaries, a pair of evolution
equations is derived for the depth-averaged temperature and solute concentration fields.

These long-wave equations are investigated for two-dimensional convection by numerical integrations, and the
results are compared with linear and weakly non-linear theory. The asymptotic expansion is shown to break down
for large values of R, when the form assumed for the convection becomes inappropriate.

The onset of three-dimensional convection is analysed. Steady square convection cells are stable. Oscillatory
convection in the form of two-dimensional travelling-wave rolls is stable to three-dimensional disturbances near
onset.

1. Introduction

Doubly-diffusive convection has a wide range of applications across many scientific dis-
ciplines, including oceanography [1-3], astrophysics [4], metallurgy, geophysics [5, 6]. It
arises as a generalization of thermal convection, when a second diffusing species is present.

The first studies of doubly-diffusive convection were in oceanography, where thermosolut-
al convection is driven by gradients in heat and salt concentration. A more recent application
in oceanography is to Langmuir circulations, which are wind-driven counter-rotating vortices
in the upper layer of oceans and lakes. A two-dimensional model due to Craik and Leibovich
describes the circulations by equations which are mathematically identical to those for
thermosolutal convection, but with temperature and salt concentration replaced by a
wind-directed velocity and a temperature, respectively [7-11]. An important industrial
application of doubly-diffusive convection concerns crystal growth from a melt. Hydro-
dynamic instabilities generate convection in the melt, with heat and melt composition as the
diffusing species. The convective motions lead to variations in the crystal growth rate, or to
irregularities in the crystal, and the interest is in eliminating or controlling the convection.
Convection in large stars [4] is subject to many diffusing components (angular momentum,
heat, the magnetic field, the composition), although the best-studied effects arise from the
double diffusion of heat and magnetic flux. The equations governing such magnetoconvec-
tion are analogous to those for thermosolutal convection, as treated here. Flow in magma
chambers is also a doubly-diffusive (or perhaps multiply-diffusive) system, as crystallization
generates concentration gradients in the magma [5].
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In this paper we investigate the non-linear dynamical behaviour of thermosolutal
convection in a layer of fluid between horizontal plates, heated and salted from below. The
boundary plates are assumed to be poor conductors of heat, in which case the first instability
as the thermal Rayleigh number is increased is to rolls with a width much greater than the
depth of the layer. The consequences of the large aspect-ratio of the motions have been
discussed for mantle convection by Hewitt et al. [12], and for solar convection by Depassier
and Spiegel [13]. The long-wave onset of Rayleigh-B6nard (that is, purely thermal)
convection has been examined theoretically according to linearized theory [14-16], and a
fully non-linear theory has been developed [17-19], in which a 'shallow-water' expansion of
the solution yields as its first non-trivial solvability condition a non-linear evolution equation
for the depth-averaged temperature field. This equation has a Lyapunov functional, and so
its asymptotic solution at large times must be time-independent. The expansion does not
assume that the disturbances are small. Other convective systems have been treated similarly
(e.g., Marangoni convection by Sivashinsky [20]).

If a constant solute flux is maintained at the boundaries (rather than the usual condition of
a constant solute concentration there) then two evolution equations emerge from a similar
long-wave expansion of the thermosolutal problem, one equation for each of the depth-
averaged temperature and solute concentration fields [21]. These equations permit both
steady and oscillatory convection. A linear stability analysis and weakly non-linear treatment
of the onset of two-dimensional convection has been carried out in [21]. A bifurcation
picture is found which agrees qualitatively with that for 'ideal double diffusion' (between
stress-free, isothermal, isosaline boundaries [2, 3]), and with that for Langmuir circulation
[7].

We describe numerical simulations of the two-dimensional long-wave equations, for
Prandtl and Lewis numbers appropriate to heat and salt in water (the oceanographic case),
and for Langmuir circulation. We compare our results with the theoretical predictions, and
find good agreement. We are able to compute steady rolls, travelling waves, and in very
small regions of parameter space we have found modulated travelling waves (that is,
travelling waves with a temporally modulated amplitude) and standing waves.

According to the long-wave expansion described here the convective motions are weak,
even when the dimensionless temperature and solute fields are 0(1). Such an assumption is
reasonable near the onset of instability, but does not hold when the thermal Rayleigh
number is large, and the long-wave expansion breaks down. We discuss this break-down, and
show how it manifests itself in our numerical simulations.

The two-dimensional thermosolutal convection problem is outlined in Section 2. The
long-wave expansion, linear stability matters, and weakly non-linear results are sketched in
Section 3, and are compared with ideal double diffusion in Section 4. Numerical simulations
of the long-wave equations follow in Section 5, and a discussion of the breakdown of the
expansion comprises Section 6. In Section 7 we analyse the steady and Hopf bifurcations in
three-dimensional convection, in a square periodic geometry. In three dimensions the
analogy between thermosolutal convection and Langmuir circulation is lost. Proctor [19] and
Knobloch [22] have examined the stability of the long-wave two-dimensional steady rolls to
cross-roll perturbations, and find squares to be the preferred planform of steady three-
dimensional Boussinesq Rayleigh-B6nard convection when symmetrical boundary con-
ditions apply at upper and lower boundaries. We extend their work, and in particular we
treat the Hopf bifurcation. Our conclusions are presented in Section 8.
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2. Problem description

Two-dimensional thermosolutal convection between horizontal planes may be described by
the following equations for the dimensionless flow quantities:

1 V2 q 2 ay
CT at 0 J(t, sV2) ) =R d S + V4

'(at ) = y + J({ H) .)(1)

(d TV) = + J(pO),

where J(a, b) - ayb - aby (the Jacobian) is the non-linear advection term. Here y and z
are, respectively, the horizontal and vertical coordinates, and 4i is the streamfunction; the y-
and z-velocity components are v = doz and w = - y, respectively. The temperature field is
T = To - z + 0(y, z, t), where T o - z is the linear conduction solution, and 0 the perturba-
tion. Similarly, the solute concentration field is C = C, - z + (y, z, t). The parameters R
and S are, respectively, thermal and solutal Rayleigh numbers; and er are Lewis and
Prandtl numbers, respectively [2, 3, 23]. Throughout this paper we shall assume T < 1 (this is
true in particular for the case of heat and salt in water, and for Langmuir circulation). We
have non-dimensionalized the depth of the fluid so that the upper and lower planes bounding
the flow are at z = 0, -1 (= -1/2 + 1/2). The two-dimensional Laplacian is V2 = d2 + 2the flow are at z =0,-1 (= -1/21/2). The two-dimensional Laplacian i = + z.

We shall consider in this paper convection between almost-insulating horizontal
boundaries, so that satisfies

ao/az a = 0 on z = -1/2 + 1/2, (2)

where a+ and a_ are small non-negative constants [19, 24]. If a constant flux of solute is
maintained through the walls then Z/Iz = 0 there. We shall allow a generalization of this
boundary condition, similar to a 'Newton's law of cooling' [15]:

aZ/az ±+ y = 0 on z = -1/2 + 1/2,

with y+, y- _ 0. In the context of Langmuir circulation, where the quantity Z is in fact the
temperature perturbation, the mixed boundary conditions on I have the same interpretation
as (2); the boundary conditions on Z also arise naturally in other applications (for example,
Sivashinsky discusses its relevance to the solidification of a dilute binary alloy in [25]). In the
long-wave equations derived below, the Biot numbers a+, a, y, and y_ appear only in the
combinations a = a+ + a_ and y = y+ + y_ (to the order to which we carry the expansion).

We shall consider two choices for the momentum boundary conditions: (i) no-slip
boundaries at top and bottom ('rigid-rigid'), or (ii) stress-free boundaries ('free-free'). Other
choices may be contemplated, but will not change the form of the long-wave equations
provided that the same boundary conditions are applied to i at z = 0 and z = -1. If this
up-down symmetry is broken new terms appear in the evolution equations to be derived, and
this circumstance is beyond the scope of this paper. 'Rigid-rigid' boundaries require
4i = by = 0 on z = 0, -1; 'free-free' boundaries that 4i = fizz = 0 on z = 0, -1.

Convective motion in the layer corresponds to non-trivial solutions of (1) for 4q. To
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determine when convection is possible we examine the linear stability of the trivial solution
to (1) by dropping the non-linear terms and calculating the growth rate s of eigenmodes
proportional to exp(iky + st}. This eigenvalue problem must in general be solved numerically
(our method is described in [7, 8]). As R is increased through a threshold value RC(S, , or,
a+, y,) the trivial solution of (1) becomes unstable when the largest real part of the
eigenvalues becomes positive. The wavenumber of this critical eigenmode is denoted by kc.
When a is small in (2) the critical wavenumber kc is also small; in fact k = O(a 1/4) as a - 0
[18-22, 25-27]. When y > a the bifurcation is always steady, that is, s = 0 at the onset of
instability [26]. Alternatively, if y - O(a), in particular if y = 0, then the bifurcation may be
either steady (s = 0) or oscillatory (a Hopf bifurcation: s = ±+iC at onset). These steady and
oscillatory bifurcations, and the consequent modes of convection are the subject of this
paper.

3. The long-wave limit

Figures 1 and 2 illustrate marginal stability curves for (1) when a = 0, and when a > 0 is
small, computed using the method described in [7, 8]. It is clear that, at least not too far
above the onset of instability, small values of wavenumber k are significant, and motions are
likely to occur on a horizontal scale much greater than the depth of the layer (which has been
scaled to unity). Such an intuition based on the linear theory is confirmed by non-linear
considerations [17, 19]. A consistent expansion of the solution to (1) under the assumption of
slow horizontal spatial variations (made in detail in [26]) yields the following:
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Fig. 1. Marginal stability curves for (1): critical thermal Rayleigh number is plotted against wavenumber k of the
perturbation. The lower curve is for a = 0, and is distinguished by the vanishing of the critical wavenumber (k = 0).
The upper curve is for a- = 0.005, so that a = 0.01: now kc > 0, and the convection has a finite horizontal scale at
onset. Other parameters: S = 0, = 7, = 1/80, y = 0 (and 'free-free' boundaries). The bifurcation is steady.
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Fig. 2. Marginal stability curve for (1). Same as Fig. 1, except that S = 1 and the bifurcation is oscillatory.
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0 = (y, t)+ e 2 (y, z, t) + (e 2 )

= (y, t) + El 2 (Y, z, t) + 0(e 2 ) (3)

q = E1/z 2 1(y, Z, t) + o(e3 12),

where , 1 = 0(1), a, y = O(e2 ), and the horizontal length scale is - 1 /2y. Here 2 is
intended to indicate the order of magnitude of the small parameter a. We may define 
unambiguously by choosing e2 = a/I, where is any constant of 0(1), for example we may
set e = a. However, our results do not depend on the choice of a.

Vertical diffusion of temperature and solute dominates, and so and I are to leading
order independent of depth. The streamfunction is, at leading order, 1, = (S a/lay -
R a /lay)F(z), where F(z) = z 2(1 + z) 2 /24 for 'rigid-rigid' boundaries, and F(z) = (z4 + 2z 3 -
z)/24 for 'free-free' boundaries. (These expressions agree with [17] for Rayleigh-B6nard
convection, when S is set to zero.)

At O(e2) in the expansion a solvability condition requires that the z-averages 0 and E

satisfy the PDEs

02 4 / 0 
-aO + [O + d(S)-ROl)] - a +b - + T y y [ R y-S - y -

at ay ay4 + ay4 ]
a~~ ~~2a4 ~~~~ a~~4 -~ a a 2 ~(4)

a g + - [r~ + d(S - - a ) +aY.at ay2 R) a4 y y].

The coefficients in this pair of equations are functions of the parameters, and are listed in the
Appendix. They are calculated using the computer algebra package 'Mathematica'. These
long-wave equations are more tractable than the full system (1), and, together with their
counterparts for three-dimensional convection (to be introduced later), will be the subject of
the remainder of this paper.

An equation similar to (4b) has been derived by Cessi and Young [28] in a model of the
thermohaline circulation of the ocean. In that work, however, the temperature is specified at
the upper boundary (so in our notation a, = c0), is then a functional of , and does not
evolve independently. Here the temperature and solute concentration play a more symmetri-
cal role. Cessi [29] arrives at a pair of equations similar to (4) in a model for thermohaline
convection on a 3-plane. In both of these papers only steady convection is found as a
large-time asymptotic state.

The qualitative nature of our results is independent of the choice of 'rigid-rigid' or
'free-free' boundary conditions for the streamfunction, although there are quantitative
differences. Applying different boundary conditions on 4i at z = 0 than at z = -1, however,
introduces new terms into (4) which break the odd symmetry (, ) (-~, -0). This
circumstance is not considered further in this paper.

3.1. Linear stability

The linear growth rate, s, for small disturbances to the trivial solution (, ) = (0, 0) in (4)
satisfies the characteristic equation s2 - As + B = 0, where

A = -(a + ry) + ( - 1 - T(1 + ))k 2 - (a- b)k 4 ,

T-1B = k2 [a(1+Y) +y(1 ) + y( )]+k 4 [1 + - ] + k6 (a - b/T) + ay + k 4 (ya - ab/r) .
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In order to simplify these and later expressions we have introduced the scaled Rayleigh
numbers R = dR, and 9 = dSI/, where d is recorded in the Appendix. We denote the two
roots of the characteristic equation by s and s2. If, say, s2 < 0 and s passes through zero as
R increases then a steady bifurcation occurs: the trivial solution becomes unstable to steady
convection. This occurs when B = 0 with A < O0. An oscillatory (Hopf) bifurcation occurs if
the real part of s passes through zero with R(s1 ) = # O. In this case s2 = -s = -ill. The
Hopf bifurcation occurs when A = 0 with B > 0.

The widest rolls are stable according to the characteristic equation, as we see by examining
the dominant terms in the limit as k-- 0. This gives s2 + (a + y)s + Tay = 0, whose roots,
s = -a, -y, are both negative. The narrowest rolls are also stable, provided the Rayleigh
numbers are not too large: the dominant large-k terms in the characteristic equation are
s2 + (a - b)k4s + (a- b/)k 6 =O, and stability of the narrowest rolls corresponds to both
a - b and a - bIT being positive. This is not the case for all values of the parameters, but is
true near the onset of instability (see Appendix).

For the steady bifurcation, the critical Rayleigh number and critical wavenumber are,
respectively,

Rs = 1 + Y + 2[(a(1 + ) - yb)(as - b,/I)]1/ 2 + O( 2 ), (5)

and

k, = [(a(1 + y) - y)I/(as - bIT)]1/ 4 + O() . (6)

Since a, y = O(E2 ), k = O(e1 1 2 ). The coefficients as and bs are just a and b evaluated at
= 1 + P, instead of at R = = 1+ + O(e). In this way the expression for Rs is made

explicit, at the expense of introducing small errors, which may be included in the terms of
O(e

2
), O(e) in (5), (6). For ~R and ks to be real, we require (a(1 + Y9) - y9')(a, - bs/T) > 0.

We shall assume that this condition is satisfied. Since a, - b, IT >0 (see Appendix) this
inequality may be interpreted as placing an upper bound on y, given a and 9': if y is too
large then the expansion (3), which assumes y = O(e2), must be reconsidered.

For the Hopf bifurcation, the critical Rayleigh number and wavenumber are, respectively,

R o = 1 + T(1 + 9) + 2[(a + y)(ao - bo)]11 /2 + 0( 2 ),

and

k o \ao-boy 1/ + O(E),ao - bo) ( )

where a. and bo are the coefficients a, b in (4) evaluated at Re = 1 + T(1 + 9) rather than at
= o = 1 + T(1 + 9) + O(e), to make the expression for Ro explicit. To ensure that ko and

R. are real we require a - bo > 0 (verified in the Appendix). At the onset of instability
S12 = -ioko, where 0 = wk o is the frequency of the oscillations, and 2 = T(1 + Y) - krT +
O(E). Since W2 must be positive, the oscillatory bifurcation can happen only if Y > ad, where

= TI(1 - T) + O(e). By contrast, the steady bifurcation occurs as R is increased with
9Y < ad, so that the stabilizing vertical solute gradient is weak. This is reasonable on physical
grounds, since a statically stable vertical concentration gradient acts as a restoring force for a
vertically displaced fluid parcel; if this restoring force is weak then diffusive damping
prevents overstability. We expect an oscillatory bifurcation if the vertical solute con-
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centration gradient is strongly stabilizing, because then the restoring force on a vertically
displaced fluid parcel can overcome diffusion, cause overshoot, and hence oscillations.

3.1.1. The onset of convection
Figure 3 compares the marginal curves according to the long-wave equations (4) with a
numerical solution [7] of the linearized eigenvalue problem for (1). The expansion performs
well in the limit as k--*O, and around the critical wavenumber, but loses accuracy (as
expected) for large k. A close examination of the numerically-computed eigenmodes for
small k shows them to agree well with the expansion (3).

The first instability of the trivial solution is steady if Rs < , and oscillatory otherwise.
Near the point 9 = b'd, a simultaneous bifurcation to steady and oscillatory convection
occurs, when R = R = Rd. In general, the critical wavenumbers k and k will differ, but
for the numerical integrations of (4) we describe later, carried out in a finite box 0 - y L,
the bifurcation at (, Y) = (dz, 9 d) is of particular interest when ks = ko. The coincidence of
critical wavenumbers can be achieved by a judicious choice of the ratio yl/a = (y/a)d.
Equating k and k, we find we must take

r 34 + 1/o-
(V '34+1 + l O(E) ('rigid-rigid')

da d 2182 + 561//a
2182 + 561-/0- + O(e) ('free-free') .

If such a choice is made then at the onset of instability both eigenvalues of the characteristic
equation vanish. The bifurcation is then a 'double-zero' or 'Takens-Bogdanov' bifurcation
[30, 31], in whose neighbourhood the steady and oscillatory modes of convection compete.

3.2. Weakly non-linear results

We now summarize the weakly non-linear analysis of (4) near the steady, oscillatory and
double-zero bifurcations: this analysis guides our numerical calculations (the details may be
found in [211).

Linear theory predicts that the onset of convection is steady if 0< .° < Y< d. A weakly
non-linear expansion of the steady-state (SS) solution reveals that the steady bifurcation is
supercritical if 0 < Y < Y* = T2/(1 - T

2) + O(E), but subcritical if Y* < Y < oYd. In the first
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Fig. 3. Comparison of marginal curves for thermosolutal convection according to (1)-the upper curve- and the
long-wave model (4)- the lower curve. The agreement between the two curves for small wavenumbers is excellent.
Parameters are: S = 0, r = 7, = 1/80, y = 0, a = 0.005 (and 'free-free' boundaries).
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Fig. 4. Bifurcation diagrams for: (a) the supercritical steady bifurcation (OY<Y9 <9*); (b) the subcritical steady
bifurcation (* < < 59 d); (c) the oscillatory bifurcation (Y > d). The thermal Rayleigh number R increases to the
right, and stable solutions are indicated by solid lines (unstable solutions are dashed). SS, TW, SW represent,
respectively, steady states, travelling waves and standing waves.

case the onset of convection as R is increased is gradual; in the second it is sudden.
Bifurcation diagrams for the two cases are given in Fig. 4(a) and (b).

At the oscillatory bifurcation that occurs when R = R, and Y > Yd, three branches of
solutions emerge, all supercritical: one branch of standing waves (SW), together with left-
and right-travelling waves (TW). The standing waves are unstable to travelling-wave
perturbations, and each travelling wave is stable. A bifurcation diagram is given in Fig. 4(c).

An analysis of the double-zero bifurcation at (, Y., /a) = (d, 5d, (y/a)d) captures both
the subcritical steady bifurcation and the oscillatory bifurcation near 9 = ad, and allows
interaction between the different branches of solutions. Dangelmayr and Knobloch [31] have
a catalogue of bifurcation diagrams which may be appropriate for different systems near a
Takens-Bogdanov bifurcation. In our case, for Y9 just below ad, Fig. 4(b) is appropriate,
and as R is increased a subcritical branch of steady rolls emerges: there is no Hopf
bifurcation. On the other hand, for Y9 just above 9ad, Fig. 5 applies, and we expect a more
complicated transition as R is increased. First the trivial solution of (4) becomes unstable in
a Hopf bifurcation to TW and SW (as in Fig. 4(c)). The SW are unstable and the TW are
initially stable. However, the TW lose stability in a Hopf bifurcation to modulated travelling
waves (MW). These MW are travelling waves with a periodic modulation of their amplitude.
They in turn are destroyed in a heteroclinic bifurcation with the SW as R is further
increased. Thereafter the SW are stable until they disappear at a heteroclinic bifurcation with
the small-amplitude subcritical SS. For larger values of R none of the small-amplitude
solutions predicted by the weakly non-linear theory is stable and the solution is attracted to a

s

TW 

Fig. 5. Bifurcation diagram for the double-zero bifurcation at (, Y) - (Rd, ,9 d). As R is increased (with Y just
above 9

d) the stable states are successively: trivial solution; travelling waves (TW); modulated waves (MW);
standing waves (SW). After the connection of the standing wave branch with the subcritical steady branch (SS),
none of the small-amplitude solutions is stable, and the solution of (4) appears, on the basis of our numerical
integrations, always to asymptote to the large-amplitude steady solution (this solution is indicated here, but is not
strictly a prediction of the weakly non-linear theory).
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large-amplitude SS (which appears to be globally attracting, on the basis of numerical
integrations of the initial-value problem for (4)).

4. Comparison between the long-wave limit and ideal double diffusion

It is interesting to compare the linear and weakly non-linear results described above with
those for ideal double diffusion ('IDD'), that is, where the governing equations are (1),
boundary conditions are 'free-free', and = = 0 at z = 0, -1. IDD can be treated
analytically, and we make our comparison with the results of Huppert and Moore [3]. It
turns out that apart from numerical factors IDD and the long-wave limit described here are
quite similar.

(i) The critical wavenumber in IDD is r/V2, where our critical wavenumber depends on
the parameters (albeit weakly, except for a strong dependence on a+, when a_ are small).
(ii) The bifurcations of the basic state in IDD as R is increased are: supercritical steady
(O < S < S*); subcritical steady (S* < S < Sd); supercritical oscillatory (Sd < S < Sbi); subcriti-
cal oscillatory (Sbi < S). Our expansion contains the first three but not the last; our theory is
not valid for sufficiently large Rayleigh numbers. (iii) The value of S separating supercritical
and subcritical steady bifurcations is S* = m3/(1- _ 2 ), where for IDD m = 27ir4 /4 
657.511 and here m = 1/id + O(e). (iv) The value of S separating steady and oscillatory
bifurcations for IDD is Sd = mT 2/(1 - T), with m = (27Tr4/4)(1 + 1/a). For the present
problem, the separating value is not so clear because the critical wavenumbers of the steady
and the oscillatory bifurcations may differ, but Sd = mT2/ (1 - T) + O(e), where m = 1/d. The
absence of o- in our expression for m may be attributed to the late appearance of q1 in the
asymptotic expansion (3). (v) A significant difference between the present problem and IDD
is that in IDD the bifurcation of the travelling wave branch is degenerate, and its direction
cannot be determined from the cubic-order Landau equations. Here, there is no such
degeneracy, and the cubic-order weakly non-linear theory predicts stable supercritical
travelling waves. The non-degenerate bifurcation to TW also allows us rigorously to apply
the theory of Dangelmayr and Knobloch [31] near the double-zero point.

Another interesting comparison is with the long-wave theory [17, 19] for Rayleigh-B6nard
convection, obtained here by setting S = 0. In that case the convection is governed by a
single PDE for 0. Provided that symmetric boundary conditions are applied to the
streamfunction at top and bottom, this long-wave equation has a Lyapunov functional, and
so the long-time behaviour of solutions must be time-independent. No such Lyapunov
functional exists for (4): we can demonstrate the existence of stable oscillatory modes of
convection according to the weakly non-linear theory (and find then numerically-see the
next section).

5. Spectral simulations

We have computed solutions of the long-wave equations (4) under 'free-free' boundary
conditions using a spectral code, near the steady, double-zero and oscillatory bifurcations.
We apply periodic lateral boundary conditions, with spatial period L. The solutions are
expanded as Fourier series:
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O = E O(t) enky, = En(t)einy

where k = 27r/L, and these expansions are substituted into (4), resulting in ODEs for the
amplitudes On, n,. Without loss of generality for long-time integrations we set 00 = 0 = 0.
The ODEs are truncated at n = N, say: we have generally chosen N= 15, which gives
reliable and accurate results. For example, with only N= 9 modes spurious period-doubling
to chaos is observed on the branch of modulated waves. The ODEs are integrated using the
NAG routine d02eaf, a variable-order, variable-step solver for stiff systems. Some of the
checks we have performed on the numerical code are described in the Appendix.

We have not attempted an exhaustive numerical investigation of parameter space for (4),
but we expect our results to be representative. Our numerical protocol varies R, with all
other parameters fixed. We have chosen to examine two sets of values for the Prandtl and
Lewis numbers: (i) ao = 7 and = 1/80, appropriate for the oceanographic problem of the
diffusion of salt and heat in water [3, 2]; and (ii) = 1 and r = 1/6.7, appropriate for the
Langmuir circulation problem [7, 8, 10, 11]. We have chosen to set a = 0.01, so that the
small parameter e - 0.1. The value for y ensures that k = ko when Rs = R0: (i) y = 0.01 x

(yla)d - 0.0104; (ii) = 0.01 x (/a)d 0.0121.

(I) Thermohaline convection

For each value of S the critical wavenumber will be different, but over the range of S that we
investigate kc varies by less than 5%, and so we fix L = 2rr/k for all our integrations, where
k = 0.474733, which is approximately the critical wavenumber at the double-zero point.

With the salt/heat-in-water application in mind, we find that S* 2.3 x 10 - 4, so that only
for very small values S < S* is the steady bifurcation supercritical. Furthermore Sd 0.019,
so only for S less than this value is the instability of the trivial solution steady, rather than
oscillatory.

When S = 0, so that the salt plays a passive role, the weakly non-linear theory predicts a
supercritical bifurcation to steady convection. Our numerical integrations of (4) agree well
with this prediction, and in Fig. 6 we show our numerical results, together with the
prediction of weakly non-linear theory (CL).

The computations reveal an unfortunate feature of the model (4) for large values of R.
The amplitude of convection, after first increasing monotonically with R, then starts to
diminish as R is further increased (Fig. 7). Eventually, the trivial solution becomes stable,
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Fig. 6. The lower curve is a plot of lo,l against R computed numerically for thermohaline convection. The upper
curve is the weakly non-linear prediction, valid in the limit as R-- R, - 131.17. Here 5 = 0.
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Fig. 7. Same as Fig. 6, except for the extended range of thermal Rayleigh number, showing the incorrect large-R
behaviour of the long-wave model (4), that the convection becomes weak for large R (and for large enough R, not
shown here, the trivial solution restabilizes).

and appears from the numerical integrations to be globally attracting. Such behaviour is a
consequence of the long-wave model (4), and does not reflect the true behaviour of (1),
where an increasing range of wavenumbers is destabilized as R is increased. We investigate
this discrepancy in a later section. For now it is sufficient to note that large-R (and large-S)
behaviour of (4) does not correspond to true behaviour of (1). Therefore no large-R or
large-S numerical results for (4) are reported here.

Numerical results for S = 1/100 > S* are indicated in Fig. 8. Here the subcritical branch of
steady solutions predicted by weakly non-linear theory is included, although this branch is
unstable, and cannot be computed using our time-dependent code.

For S = 1 > Sd the linear theory predicts a Hopf bifurcation of the trivial solution as R is
increased through R0 . In agreement with the weakly non-linear predictions, we find branches
of travelling waves (TW) and standing waves (SW) for R > R0 , with the TW stable and the
SW unstable (Fig. 4(c)). A summary of the numerical results is given in Fig. 9.

The SW are not indicated in the figure, although we have computed them for a few values
of R, by choosing a small-amplitude initial condition with reflection symmetry in the plane
y = 0. When, subsequently, we add a perturbation to the fully-developed SW that breaks the
reflection symmetry, this perturbation grows until the SW is lost, and the solution tends to
either the TW or the large-amplitude SS. All SW we have computed have turned out to be
unstable to such perturbations. Standing waves in finite-wavenumber thermosolutal convec-
tion have been examined by Sch6pf and Zimmermann [32], Knobloch and Moore [33] (both
according to linear theory), and by Cox et al. [8] for Langmuir circulation (according to
weakly non-linear theory and numerical simulation), and found to have a vertical structure
that changes according to the phase of the SW cycle. In contrast, the present SW have a

l 0.1
a

a)
-tI I I

I I I I
131 132 133 134

R

Fig. 8. Numerical results for thermohaline convection at S = 1/100: plot of 101, against R. Upper curve is the
large-amplitude steady branch; lower solid curve is the weakly non-linear prediction for the unstable subcritical
steady branch which links the bifurcation point to the turning point of the large-amplitude solutions.
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Fig. 9. Numerical results for thermohaline convection at S= 1: plot of 10, against R. Upper curve is the
large-amplitude steady-state branch; lower curve is the travelling wave branch.

constant vertical structure, because is a separable function of y and z, at least if the
streamfunction is reconstructed from i1 alone, once 0 and X are computed.

Numerical integrations near the double-zero bifurcation failed to yield any solution other
than the large-amplitude steady state branch. We attribute the apparent lack of oscillatory
solutions (which should exist, as in Fig. 5) to our not integrating sufficiently close to the
double-zero point (Rd, Sd). With high precision and enormous patience we could no doubt
find TW, SW and MW there.

(II) Langmuir circulation

With (r = 1 and r = 1/6.7, appropriate for Langmuir circulation, the critical wavenumber is
only weakly dependent on S, and we fix L = 27rrk, with the double-zero value k 0.47034.
The significant values for S are: S* 0.408, S 3.142.

The same qualitative picture emerges here as for (i), except we have been able to capture
the oscillatory solutions near the double-zero bifurcation. Figures 10 and 11 present our
numerical results for S = 10 and S = 20, respectively. Stable travelling waves and modulated
waves are found, in accordance with the predictions based around the double-zero point
(Fig. 5), even though S is quite far removed from Sd . These oscillatory solutions co-exist
with the large-amplitude steady state. Stable standing waves are found, albeit in a very small
parameter range: for example, when S = 4 stable standing waves are found for values of R
between approximately 156 and 156.145.

0.6
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- 0.4

v 0.3

f 0.2

0.1

160 180 200 220 240
R

Fig. 10. Numerical results for Langmuir circulation with S = 10 > Sd. Upper curve is the branch of steady states;
lower curve is the travelling wave branch, which bifurcates into modulated waves at R = 166.5. The MW have an
oscillatory amplitude, and the figure indicates the maximum and minimum values of 10, I during the MW cycle. The
TW and MW co-exist with the SS.
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Fig. 11. As for Fig. 10, except S = 20. The TW and MW branches grow to larger amplitude than for S = 10, and
now there is a region near the onset of the TW where the TW are the only stable state.

6. Large-92 asymptotics

Our numerical results show that the behaviour of (4) in the limit of large A (or R) does not
reflect that of (1). According to the long-wave theory the motionless state is stable for large
X, whereas in fact it should be increasingly unstable. This discrepancy arises because the
asymptotic expansion (3) becomes disordered as becomes large - an examination of the
terms in the small-e expansion (3) reveals that for large R

(0, E, e1-1/2R -lp,) = 0(1) + O(e1R) + O(E2 1 2) + . ,

so the expansion is useful only if eR 4 1. It cannot, therefore, be the basis for an
investigation of the large-R behaviour of (1) for fixed, but small, wavenumber (that is, for
fixed E). Physically, when R is not large the convective motions are sufficiently weak that
vertical diffusion of 0 and X can maintain these fields in an almost depth-independent state,
assumed in (3). For larger values of , convection is more vigorous and the vertical
homogeneity of 0 and E cannot be maintained by vertical diffusion against strong advection.

In (1) the unstable wavenumbers lie between kmin = O(I 112) and kmax = O(i 1' 4), so
that as 2i is increased, an increasing interval of wavenumbers is unstable. Not all these
unstable eigenmodes are captured well by the small-k analysis that leads to (4). In particular
our numerical solutions of the linear stability problem for (1) indicate that the vertical
structure of the 0- and -components of the eigenmodes of (1) is not even approximately
homogeneous when R? is large. Furthermore, for large R and k = 0(1) the most unstable
eigenmode has 0 and E smaller than a by a factor of i 12, so the ordering assumed in (3),
that 0 and E dominate ¢q, becomes invalid.

7. Three-dimensional convection

In the Appendix we sketch an expansion to reduce three-dimensional convection to two
dimensions in the long-wave limit. The simplest case, and the only one treated here, is that
of infinite Prandtl number and 'rigid-rigid' boundaries. With x and y the horizontal
coordinates, the analogue of (4) for three-dimensional convection is

aO
at = -a0 + V[ + d(SI - RO)] - aV4O + bV4'

+ TcVH {[V,(RO - SI) VH]VH(RO - S)} 
(7)
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at = -ry + V2[T + d(SI - R0) - avH0 + bV4'

+ cV. {[V,(Rb - SS) VHZ]VH(Rg - S)).

Here = 0(x, y, t), = (x, y, t), and the gradient operator is VH - (a., ay). We shall
analyse the onset of convection according to (7) in a square periodic geometry with 0 <x,
y < 2rlkc.

7.1. Steady bifurcation

Near the supercritical steady bifurcation, as is increased with 0< < <Y * , there is
competition between rolls and squares. (Squares are the non-linear counterpart of a linear
superposition of rolls oriented at right angles.) Busse and Riahi [24] demonstrated that
squares are stable, and rolls unstable to cross-roll perturbations for long-wave Rayleigh-
B6nard convection. Their results rely on the Lyapunov functional which exists in that
problem, and we cannot apply their technique to the present problem because the pair of
equations (7) possess no such Lyapunov functional. Knobloch [22] has used equivariant
bifurcation theory to predict a range of outcomes for the competition between squares and
rolls in long-wave convection, according to the values of various coefficients. His analysis
proceeds from a single long-wave equation, such as arises in Rayleigh-B6nard convection,
rather than the pair we have here, but he does not assume the existence of a Lyapunov
functional.

For the present problem we derive coupled Landau equations for the amplitudes of rolls
oriented a right-angles, and calculate the stability of the roll and square solutions directly.
Near the steady bifurcation, with g = s + 6/522, we let the solution be

0 = 8(A(X)(t) eikcx + A(Y)(t) eik y) + c.c. + 0( )

; = 8(mA(X)(t) eikcx + mA(Y)(t) eik Y) + c.c. + O( 3),

where m = 1/ + O(e), and substitute this expansion into (7), considering successive (odd)
powers of the expansion parameter, . The amplitudes A(x) and A(Y) are associated with roll
solutions perpendicular to the x- and y-axes, respectively, and evolve on the slow time scale
S 2t. At 0( 3) we find coupled Landau equations for the amplitudes of the x- and y-rolls,

dA(x)
dt= A(X)[,Rl2 - i 2(IA()I12 + 2JIA() 12)]

dA(Y)
dt = A(Y)[1 2 - A2(2 IA(X)I 2 + IA(Y)12)],

where

ydk_ 3c71Y* - Ylk + >
Pd - Y>O d2e*( dy* _)+ )

We discuss only the supercritical steady bifurcation (O< 5 < Y5*), where > 0. (For
5e > Y9* the sign of p, is reversed, and the bifurcation is subcritical. Then fifth-order terms
must be included in the Landau equations in order for the amplitudes to saturate.)
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Squares
Rolls

Fig. 12. Bifurcation diagram for steady three-dimensional convection in a square geometry. Branches of rolls
parallel to each horizontal coordinate axis emerge as - is increased, together with a branch of squares. The rolls are
unstable, and the squares stable.

When Ri2 < 0 the only steady-state solution is the zero solution, which is stable. It becomes
unstable for R2 > 0, and two branches of steady rolls emerge, with (IA(x)1 2, IA(Y)12) = (R12/
Ap2, O) or (0, ,1 2/ 2 ), together with a branch of squares, with IA(")12 = IA(Y)I2 = 3/,i 2/ 5 2.
All branches are supercritical, that is, they exist for R2 > 0, with squares stable and rolls
unstable to cross-roll perturbations. A bifurcation diagram is given in Fig. 12.

7.2. Hopf bifurcation

The long-wave Hopf bifurcation does not seem to have been studied previously in convection
problems. Near the Hopf bifurcation, with R = + 22, the leading-order solution is a
superposition of four travelling waves which bifurcate simultaneously, one in each sense
parallel to each axis:

0 = 8(A(x. r
) ei(kc

x -
fit) + A(xI

J
) ei(kr

+ fi
t)

+ A(y,r) ei(k
e y -

t) + A(YI) e
i ( k

y+nt)) + c.c. + 0( 3 )

= 5(mA( r) ei(kcx-t) + m*A(x . ) ei(kcx+n t)

+ mA(Y r) ei(kcy- t) + m*A(Y®I) ei(kCY+Ot)) + c.c. + 0(8 3) .

After a good deal of algebra, we find the coupled Landau equations that govern the four
amplitudes to be

d
dt IA(X' rl = IA(X r)l[ 3~2 - A4 (IA(r)l 2 + 21A(X')1 2 + 21A(Y')1 2 + 21A(Y"1) 2)1 (8)

and its three cyclical counterparts, where to leading order in e, p/3 = k2/2, and 4 =
ck4(1 - r2 )Ro/(2d2 ).

There are five classes of steady-state solutions to the governing equations indicated in (8),
according to the number of amplitudes that are non-zero.

Firstly the zero solution, where all amplitudes vanish, is stable for R2 < 0 and unstable for

R2 > 0. The four other classes of solution bifurcate supercritically from zero as R increases
through R. There are four travelling-wave solutions, for example

IA(xr)12 = , IA(x"I) = A(Y'r)I = IA(Y") I = ,

where we define = lI,3R22/j 4. By linearizing about this steady state we find the eigenvalues
associated with infinitesimal disturbances to be (-2tz, -, -, -); since all are negative
then each TW is stable. There are six two-mode solutions, for example

IA(x'r)I2 = IA(X")l 2 = p/3 ,
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All six are equivalent according to the amplitude equations even though some, like (9),
represent standing waves, while others represent mixed x-TW and y-TW states. In each case
the eigenvalues of the linearization about the steady state are (- 2 , 2/3, -/3, -/3),
and these states are unstable to perturbations which amplify either of their two non-zero
components. There are four three-mode solutions, again all equivalent, for example

IA(X'r)12 = IA(X"I)I 2 = IA(y'r)2 = /5,= 0

The eigenvalues of this state are (-2/, 2/5, 2/5, -/5), and the dangerous perturbations
drive the system to a single-mode TW solution. Finally, there is the full four-mode
mixed-SW state, with

IA(x'r)12 = IA(X')1 2 = IA(Yr)1 2 = IA(Y")I2 = /7.

This solution has the eigenvalues (-2/, 2//7, 2//7, 2//7), and so is unstable. In summary,
for supercritical conditions (2 > 0) the only stable steady-state solutions of the amplitude
equations (8) represent two-dimensional TW solutions.

8. Conclusion

The long-wave results we have described for two-dimensional convection mirror the
bifurcations of the basic state in IDD: the instability is steady when the restoring force due to
the vertical solute gradient is weak, and oscillatory when it is stronger; at first the steady
bifurcation is supercritical, then subcritical for larger solutal Rayleigh numbers; travelling
waves are the preferred mode of oscillatory convection. The quantitative details differ, but
the qualitative story is the same.

In contrast to the long-wave theory for Rayleigh-Benard convection [17, 19], the long-
wave equations presented here for thermosolutal convection do not possess a Lyapunov
functional, and there are stable oscillatory solutions (primarily travelling waves). In our
derivation of the pair of long-wave equations (4) we have assumed that y is small: if this is
not so then a single long-wave equation is appropriate for 0 [34], and it has a Lyapunov
functional [35].

Our numerical simulations reproduce all stable states predicted by weakly non-linear
theory, and continue these solutions beyond the regions in parameter space where small-
amplitude expansions are valid, near bifurcation points. Over-all, the only solutions of (4)
likely to be observed are the steady states and the travelling waves, and these states may
co-exist over small ranges of parameters. Standing waves and modulated waves are confined
to tiny regions of parameter space (indeed we could not find them at all for thermohaline
convection, these regions were so small).

The long-wave expansion is useful not too far above onset, but it is inappropriate for large
Rayleigh numbers since the terms in the expansion become disordered. This restriction does
not result from an assumption that the solutions are of small amplitude, rather that the
convection should take a particular form, with the temperature and solute concentration
fields approximately vertically uniform. Such a diffusion-dominated structure cannot be
maintained against vigorous convective motions.

The two-dimensional rolls that arise at the supercritical steady bifurcation for 0 < 9 < Y*
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are unstable to cross-roll perturbations, at least near their onset, and so we would not expect
to find them in a square geometry. This result agrees with that of a long-wave analysis for
Rayleigh-Benard convection [19, 22]. A square planform is the preferred mode of steady
convection in that case. We have not determined whether the large-amplitude steady-states
are similarly unstable, and so whether these rolls might be observable in the three-
dimensional problem. The two-dimensional travelling waves are stable to parallel and to
perpendicular disturbances, and so are the preferred form for three-dimensional oscillatory
convection.
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Appendix

A. Appendix

A.1. Coefficients of (4)
The coefficients of (4) given by the following expressions:

a {/32(- ) + /33[2 1/- + ( -Y)1o]j

b = {(p2(Y - ) + 33[2 T- /o + (d - TY)/o']} ,

where /3 = 462, 2 = 5, P3 = 11, c = 1/(362880T), d = 1/720 for the 'rigid-rigid' case, and
/ = 5544, /32 = 31, 33 = 561, c = 31/(362880T), d = 1/120 for the 'free-free' case. In each
case gR = dR and 9 = dSIT.

The weakly non-linear calculations near the steady and the Hopf bifurcations require
a - bl/ > 0 and a - b > 0, respectively. Although these inequalities certainly do not hold for
all choices of the parameters X, Y, or, , they do hold close to the bifurcation point. Near the
steady bifurcation a - b/I = 17/462 + O(e) ('rigid-rigid'), or a - b/I = 1091/5544 + O(E)
('free-free'), and so when e is small a - b/I > 0. Near the Hopf bifurcation we find

a - b = [17(1 + T) + 11T/I]/462 + O(e) >0 ('rigid-rigid'),

a - b = [1091(1 + T) + 561T/o1]/5544 + O(E) > 0 ('free-free').

When E is small a - b > 0.

A.2. Checks on the numerical code
We have checked the numerical calculations of steady and unsteady motions in (4) in several
ways. We have compared the growth rates and decay rates of small disturbances with those
predicted by linear theory, and find excellent agreement. Quantitative checks have also been
made against the weakly non-linear theory [21], both for travelling waves and for steady
states, and are indicated in Table 1.
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Table 1. A comparison of numerical integrations of (4) using 15 modes (N = 15) and weakly non-linear theory with
a- = 7, = 1/80. All are for 'free-free' boundaries. The first table concerns the steady bifurcation with S = 0, where
Rs - 131.17. The second concerns the TW at the Hopf bifurcation with S = 1, where R, - 133.92. The difference
between the prediction and the numerics (given in the column marked 'Error') should tend to zero as R-* R, -, and
as e---0. (In these examples a =0.01, so -0.1.)

l0, I WNL [0, ! Numerical Error

R= 131.3 0.0336 0.0330 2%
R = 132.0 0.0839 0.0814 3%
R = 135.0 0.1800 0.1723 5%

10, I WNL 10 I Numerical Error

R = 134.5 0.01351 0.01409 4%
R = 135.3 0.02125 0.02266 6%
R= 136.0 0.0268 0.0319 17%

Most integrations described in Table 1 have used N = 15 modes. A reduction to N = 9
modes yields a significant reduction in computing times, and solutions are generally quite
accurate, except for the MW, which undergo an interesting but spurious period-doubling
cascade to chaos.

B. Derivation of (7)

The derivation of (7) proceeds by substitution of a small-e expansion of the unknowns into
the dimensionless equations governing the perturbations in three-dimensional convection:

l (u + u -Vu =-Vp + (RO - S)k + V2 u

a- + u V + w =V20
at

at + u V + w = TV21,

where k is the unit vertical. We expand (E 1/2u, 0, Y, p) as asymptotic series in powers of E.
The horizontal scale of the motions is e-/1 2(x, y). The derivation below broadly follows the
derivation of two-dimensional equations (1) by Cox and Leibovich [21], but here we may not
employ a streamfunction. Furthermore, only 'rigid-rigid' boundaries and an infinite Prandtl
number are considered - otherwise a large-scale pressure field drives a divergence-free
velocity field that advects the temperature and concentration fields, which alters the form of
the governing equations derived here.

At leading order in the expansion we find that 00 and X0 are independent of the depth z.
To avoid ambiguity, these quantities may be defined as the depth averages of 0 and X,
respectively. The leading-order pressure field serves to balance the buoyancy in the z-
momentum equation: po = (z + 1/2)Y, where Y = R o - SI. The leading-order horizontal
velocity field driven by this pressure is (ul, v,) = (z3/6 + z2/4 - 1/24)VHY. The first contri-
bution to the vertical velocity field, wl, follows from the continuity equation: wI = (z4/24 +
z /12 -z/24)VHY.

At O(e) in the governing equations we find evolution equations for 0o, Yo on the timescale
et: d00 1O t =V(o - dY), a 0 /Oat=V2 (ro -dY), where d=1/720. Expressions for 0, 1
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are of the form 01 =VHYVHOoD(z) + V2 E(z), X1 = -'VHY VHYOD(z) + r-V2YE(z),

where the polynomials D and E are found by solving inhomogeneous ordinary differential
equations subject to zero-flux boundary conditions at upper and lower surfaces.

The pressure p, is determined from the z-momentum equation up to a function of
integration, independent of depth:

Pl =VHY VHZF(z) + [(R - SIr)G(z) - B(z)]V2Y + P(X, y, t) 

The velocity components (u2, v2 ) may then be determined, up to terms proportional to pi,:

(u2, v2) =VH{VHY VHZJ(z) + [(R - SIT)K(z) - 2H(z)]V2 Y + pL(z) .

The term p, is fixed once the depth-average of the continuity equation is considered at
O(e2 ), whence

L(z)pfl = -VHY VHZJ(z)- [(R - SIT)K(z) - 2H(z)]V2 Y .

Now w2 may be calculated from the continuity equation:

W2 = -V {VHY VHZN(z) + [(R - SIT)P(Z) - 2M(z)]V2Y + P Q(Z)} .

The evolution equations for 00, X0 on the slower time scale e2t follow from a z-integration
of the governing equations for 0 and 1:

ae00
at + (u, VH + wlaz) + z), + VHO = W4 - Oo

at + (ul *VH + wloz) + u2 vH = w4 - Yo-

The result is the pair (7), where we use the fact that the following polynomials are odd in
z + 1/2, and so have zero average over the depth: B, D, G, H, K, N, Q, T.
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